WeatherPi Version 2 PCB issues

WeatherPi version 2 has been assembled and I have attempted to test. And that's when I hit some issues.

I'd assembled the board with new 40pin extended headers to fit to a A+, B+ or 2. Unfortunately my test Pi was an old style model A, and the 40 pin header get's in the way of the Audio port on the classic A.  I tried it on a B+ that I have but the PC can't clear the USB and ethernet socket.  Major fail.  I'd soldered the extended header too close to the PCB rather than at the full extent.

2015-04-15 10.53.22Thankfully I came up with the idea of using an additional header to "stand off" the PCB from the Pi.  This worked but left a 10cm square board hanging in mid air.  Once populated with cables the entire thing tips over.  Another reason the next version must have mounting holes for both forms of Pi.

Once I'd worked that out I turned on the Pi. I had a power light but nothing happening. I'd already tested the Pi and it was fully networked, but I couldn't connect.  I gave in and connected a monitor to find it wasn't booting up.

To cut a very long story short I spent a very annoying two days trying to figure it all out.  I discovered that despite spending 2 weeks on the PCB design and checking it for a further 5 days, that I'd wired up the IC chips incorrectly.

On the MCP23017 digital input output IC I'd wired up the i2c and power wrongly.  Basically I'd wired up from the bottom upwards, but should have missed a pin at the start which is not used.

On one of the PCF8591 analogue chip I'd missed out an SCL connection for i2c. On both chips I'd mistakenly wired up the address pins to positive instead of negative. This isn't a big issue as the chips appear successfully on different port numbers.  I'd also connected the VSS pin to positive instead of negative.At this stage I'm ready to give up.

 

WeatherPi Version 2 PCB arrived and assembled

2015-04-15 10.51.39The WeatherPi version 2 PCB has finally arrived from Seedstudio in Singapore.

I'm impressed with the "customer experience" from Seedstudio and they always seem to delivery 3 weeks after initial order.

10 PCB's came in at about £20.  To have these produced in the UK would have cost about £50 for the first one

The PCB was populated in height order.  Smallest components first working my way up to the tallest components :-

  • Surface mount LED's, Resisters and switches (painful when using a soldering iron)
  • Resisters
  • IC sockets
  • Jumper style headers
  • Molex style headers
  • 40 pin Header for connecting to Pi
  • Finally the Analogue and Digital IC's, plus the DS18B20 temperature sensor

I've gone ahead and assembled it and these are my initial thoughts:-

  • Needs mounting holes to match up with the A+, B+ and Pi 2.
  • Needs mounting holes on each corner
  • The I2c headers at the top of the board are the wrong way round.  All my other PCB's have the "head board" of the header inwards. I had to switch them round to match up with existing i2c devices I have
  • It was difficult to solder the 8 different 2 way headers for the analogue ports (on the left).  Much easier to solder the 8x2 headers for digital inputs and outputs

Next step will be testing and initial power on!

 

 

 

i2c Analogue Breakout PCB (ver 1.2)

As part of development of Weather Pi, I wanted to test out Analogue sensors with the Raspberry Pi.  I had a look a some of the commercial available PCB's such as Custard Pi and Quick2Wire but was shocked at the high price (£15 - £20 plus P&P).

PCF8591The PCF8591 I2C chips that these units are based on can be purchased for about £1 so that does not justify the high price. This includes postage from China.

 

Introducing the Analogue Breakout Version 1.2 PCB.

PCF8591-1.2_pcb

The PCB uses 2 x PCF8591P i2c chips providing 8 ports for analogue sensors.  The chips are hard coded on the PCB to use i2c channel 48 and 4c.

The PCB has a jumper to allow the chips to run at 3.3 volts or 5 volts.  At the time of designing I was unsure if it was safe to run the chips at 5v when interfacing with the RaspberryPi.  Normally the Pi's only like 3.3 volts.

Also on the PCB are 3 x i2c headers running at 3.3v.

The PCB is compatible with all models of Pi except the compute model.  Only the 3.3v, 5v, GND, SDA and SCL pins are used. Using a 5cm board it's not possible to include space for all 40 possible GPIO pins, hence why they run to the edge.

The PCB's were ordered from SeedStudio, and cost about £7 for 10.

 

 

Update on Weather Pi – February (PCB Ver 2)

Testing on the Weather Pi continues.

I already have code for all the sensors apart from the Wind Direction sensor.  The direction sensor uses 8 different resistors to indicate the wind direction using only 2 wires.  Unfortunately I've had major problems calibrating it.  The code is basically the same for detecting the light level using an LDR, but I've not been able to tune it to obtain reliable results.

I've decided that the capacitor method for detecting analogue values is not reliable enough.

PCF8591I've been working on a new PCB design that will use dedicated analogue sensors.  I could have used an 8 port SPI chip but the code looked rather complex to interpret the values.  Instead I decided to use an I2C PCF8591. Unfortunately it only has 4 ports, so I'll use 2 of them.

This is the latest PCB Design.

weather-pcb-10-x-10-Ver2-0-smd-LEDs_pcb

Major changes have been made to the PCB:-

  • 40 Pin header to connect to a Raspberry Pi A+, B+ and Pi2 (Weather Pi also works with A and B models)
  • Row of breakout pins alongside the GPIO header
  • 2 additional 3.3v I2C headers points, and 2 x 5v points
  • More header points for the temperature sensors (ds18b21)
  • Sensors that work as switches will use an MCP23017 I2C chip (Rain Quantity, Wind Speed, plus the 3 switched used for monitoring)
  • Analogue Sensors will use a PCF8591P I2C chip (Light Level, Wind Direction, Rain Detector and an additional soil moisture sensor).  There's a jumper to allow either 3.3v or 5v operation.  At the time of designing this I'm unsure if it's safe to use 5 volts.
  • The 3 LED's are joined by a 4th Blue LED, and will run via the same MCP23017.  This will allow 4 additional LED's to be added at a later date.  Red - power, Orange - Linux running, Green - script running, Blue - networking working.
  • Points added to allow surface mount Switches, LED's and resistors to be used (SMD components).
  • A 16 row breadboard style prototyping area, with 3.3v and negative power rails.

The PCB has grown from 10cm x 5cm to 10cm square.  The size is required to fit the 2 analogue chips and one digital chip.  Space may be saved in future versions by using surface mount chips.

 

Update on the Weather Pi – January

A short update on the Weather Pi. The Weather Pi unit has been fully assembled and tested on the bench.

2015-03-02 11.28.18I've slightly modified the stand for the sensors to reduce the number of components required.  On the left hand side we have the wind speed and wind direction.  Right hand side we have the temperature sticking out of the end of the pipe.  Unseen inside the pipe is the humidity sensor.  On top we have the rain detector and the rain quality sensor.  The cables are fed inside the plastic tubes down to the base.

2015-03-02 11.28.31The plastic tubes are made from 44mm drainage pipe normally used to connect sinks and washing machines to the drains.  The bottom of the pipe has been cut at a 45 degree angle to allow it to be driven in to the ground.  I've placed 45 degree bends on to top T section of pipe to try and keep the bulk of the rain out, whilst allowing air to circulate to the humidity sensor.

2015-03-02 11.28.41The Raspberry Pi and the Weather Pi circuit board have been placed inside a "DriBox" enclosure.  This has access points to allow cables to enter the box, and have rubber seals to keep the rain out. I plan to have the LED's sticking out of the case so I can see the Pi has power and is running the scripts.  The case has enough room for the Raspberry Pi, Circuit board, USB WIFI dongle with large areal, and also a large USB battery.  At this stage I haven't been able to route electricity outside to power the box, so am relying on USB batteries

 

DRI BOX 1494SB99 dri box 455 gram blue indicating silica gel DriBox 4 bag
DRI BOX 1494SB99 dri box 455 gram blue indicating silica gel DriBox 4 bag $9.99
End Date: Tuesday May-16-2017 11:09:29 PDT
Buy It Now for only: $9.99
Dri box Outdoor Weatherproof Box IP55 P3 285 330 DriBox SOCKiT Box sockitbox
Dri box Outdoor Weatherproof Box IP55 P3 285 330 DriBox SOCKiT Box sockitbox $34.99
End Date: Monday May-8-2017 18:10:10 PDT
Buy It Now for only: $34.99
Dri Box DRiBOX FL 1859 330 IP55 Large Weatherproof Box Black
Dri Box DRiBOX FL 1859 330 IP55 Large Weatherproof Box Black $42.68
End Date: Saturday May-6-2017 6:58:44 PDT
Buy It Now for only: $42.68
Dribox Waterproof Outdoor Electric Enclosure Box for Lights Parties BBQs
Dribox Waterproof Outdoor Electric Enclosure Box for Lights Parties BBQs $37.03
End Date: Sunday Apr-30-2017 22:06:59 PDT
Buy It Now for only: $37.03
DRiBOX FL 1859 200 IP55 Small Weatherproof Box Black
DRiBOX FL 1859 200 IP55 Small Weatherproof Box Black $22.26
End Date: Wednesday May-24-2017 23:44:30 PDT
Buy It Now for only: $22.26
DRiBOX FL 1859 200G IP55 Small Weatherproof Box Green
DRiBOX FL 1859 200G IP55 Small Weatherproof Box Green $19.99
End Date: Sunday May-21-2017 10:54:39 PDT
Buy It Now for only: $19.99
DRiBOX FL 1859 330 IP55 Large Weatherproof Box Black
DRiBOX FL 1859 330 IP55 Large Weatherproof Box Black $36.90
End Date: Sunday May-21-2017 10:23:47 PDT
Buy It Now for only: $36.90
Garland Dribox Black Medium
Garland Dribox Black Medium $30.67
End Date: Monday May-8-2017 8:55:16 PDT
Buy It Now for only: $30.67
Outdoor Electrical Box 330mm DRiBOX
Outdoor Electrical Box 330mm DRiBOX $36.92
End Date: Tuesday May-9-2017 7:33:08 PDT
Buy It Now for only: $36.92

 

 

 

Weather Pi – first one now soldered

Weather-Pi-PCB-SolderedMy first Weather Pi is now soldered up. Took about 45 minutes to solder it.

For some reason the resisters I ordered from CPC seem to be smaller than what I would class as "normal" size. This caused delays in bending the legs to the correct size.

After further research I bought resisters about 3.2mm in length rather than the normal 6mm in size.  I still haven't worked out what the difference is between them.

I decided the first Weather Pi would be a low profile version, so used 90 degree Molex connectors.

The PCB includes 3 LED connection points, but decided just to solder the LED's straight to the PCB.

 

Weather Pi – PCB Design

weather-pcb-10-x-5-Ver1-2_pcbUsing the initial Proto Plate design, I was able to turn that in to a PCB layout.  Again this was done using the Open source Fritzing computer program.

It took many iterations to obtain the best layout of the board as there's no set layout required.  Initially I tried a 5cm x 5xm layout but just couldn't get it to fit.  Then a 5cm x 10cm board was tried with the Molex connectors round the edges.  Also tried a 10 x 10cm board. Finally after many days work I managed to put all the connectors down one side of a 5cm x 5cm PCB.

Using Fritzing I was able to export the design as a Gerber file.  This is an industry standard design file for producing PCB's.  I'd used SeedStudio PCB fabricators before and was happy with the quality so decided to use them again.

SeedStudio charge about $15 for 5 copies of a 5cm x 10cm design.  Delivery can be up to 6 weeks unfortunately.

It was easy to upload the Gerber PCB files to SeedStudio and the order is now in progress.